72 research outputs found

    Resampling technique applied to the characterization of microsegregation

    Get PDF
    Characterization of short-range chemical heterogeneities in metallic materials, such as the so-called microsegregation resulting from solidification, is most often performed using EDS or WDS spot measurements. The most usual way is to perform countings on points located along a regular grid. Due to experimental limitation, the grid step is generally of the same order of magnitude than the characteristic distance(s) of the chemical heterogeneities under investigation. In such a case, the measurements can not be assumed to be independent one from each other, and the resulting interferences (correlations) preclude application of simple statistics to the solute distribution obtained. In the present work, this is clearly shown by using a resampling technique applied to "chemical" images obtained by phase field modelling

    Kinetic Modeling of Isothermal or Non-isothermal Adsorption in a Pellet: Application to Adsorption Heat Pumps

    Get PDF
    Understanding the interaction between a fluid and a solid phase is of fundamental importance to the design of an adsorption process. Because the heat effects associated with adsorption are comparatively large, the assumption of isothermal behavior is a valid approximation only when uptake rates are relatively slow. In this article, we propose to determine when it is needed to choose the isothermal or non-isothermal assumption according to two physical parameters alpha (ratio convection/capacity) and beta(quantity of energy/capacity). The proposed problem is solved by a mathematical method in the Laplace domain. When alpha-> infinite (infinitely high heat transfer coefficient) or beta->0(infinitely large heat capacity), the limiting case is isothermal. When the diffusion is rapid (alpha<10) the kinetics of sorption is controlled entirely by heat transfer. If the adsorption process is to be used as a heat pump, it shall be represented by an isotherm model with alpha and beta as high as possible

    Relation Structure moléculaire - Odeur Utilisation des Réseaux de Neurones pour l’estimation de l’Odeur Balsamique

    Get PDF
    Les molécules odorantes (parfums ou flaveurs) sont utilisées dans une grande variété de produits de consommation, pour inciter les consommateurs à associer les impressions favorables à un produit donné. La Relation Structure moléculaire-Odeur (SOR) est cruciale pour la synthèse de ces molécules mais est très difficile à établir due à la subjectivité de l’odeur. Ce travail présente une approche de prédiction de l'odeur des molécules basée sur les descripteurs moléculaires. Les techniques d’analyse en composantes principales (PCA) et de d’analyse de colinéarité permettent d’identifier les descripteurs les plus pertinents. un réseau de neurones supervisé5 à deux couches (cachée et sortie) est employé pour corréler la structure moléculaire à l’odeur. La base de données décrite précédemment est utilisée pour l’apprentissage. Un ensemble de paramètres est modifié jusqu’à la satisfaction de la meilleure régression. Les résultats obtenus sont encouragent, ainsi les descripteurs moléculaires convenables corrèlent efficacement l'odeur des molécules. C’est la première étape d’un modèle générique en développement pour corréler l'odeur avec les structures moléculaire

    Numerical and Computational Strategy for Pressure-Driven Steady-State Simulation of Oilfield Production

    Get PDF
    Within the TINA (Transient Integrated Network Analysis) research project and in partnership with Total, IFP is developing a new generation of simulation tool for flow assurance studies. This integrated simulation software will be able to perform multiphase simulations from the wellbore to the surface facilities. The purpose of this paper is to define, in a CAPE-OPEN compliant environment, a numerical and computational strategy for solving pressure-driven steady-state simulation problems, i.e. pure simulation and design problems, in the specific context of hydrocarbon production and transport from the wellbore to the surface facilities

    An application of a cocitation-analysis method to find further research possibilities on the area of scheduling problems

    Get PDF
    In this article we will give firstly a classification scheme of scheduling problems and their solving methods. The main aspects under examination are the following: machine and secondary resources, constraints, objective functions, uncertainty, mathematical models and adapted solution methods. In a second part, based on this scheme, we will examine a corpus of 60 main articles (1015 citation links were recorded in total) in scheduling literature from 1977 to 2009. The main purpose is to discover the underlying themes within the literature and to examine how they have evolved. To identify documents likely to be closely related, we are going to use the cocitation-based method of Greene et al. (2008). Our aim is to build a base of articles in order to extract the much developed research themes and find the less examined ones as well, and then try to discuss the reasons of the poorly investigation of some areas

    Modular simulation and optimization of an 12MW industrial gasifier

    Get PDF
    In this work, a flexible model, built from elementary modules, is developed for an industrial waste gasification process, in an industrial moving bed reactor located in Morcenx (France). This gasifier is able to treat more than 46,875 ton/year of RDF (Refused Derived Fuel) waste for producing 12 MW. Drying, pyrolysis, combustion / gasification and plasma polishing are used to convert waste directly into a synthesis gas composed of carbon monoxide and hydrogen. This synthesis gas is then used for producing electricity via gas engine

    General methodology for exergy balance in ProSimPlus® process simulator

    Get PDF
    This paper presents a general methodology for exergy balance in chemical and thermal processes integrated in ProSimPlus® as a well-adopted process simulator for energy efficiency analysis. In this work, as well as using the general expressions for heat and work streams, all of exergy balance is presented within only one software in order to fully automate exergy analysis. In addition, after exergy balance, the essential elements such as source of irreversibility for exergy analysis are presented to help the user for modifications on either process or utility system. The applicability of the proposed methodology in ProSimPlus® is shown through a simple scheme of Natural Gas Liquids (NGL) recovery process and its steam utility system. The methodology does not only provide the user with necessary exergetic criteria to pinpoint the source of exergy losses, it also helps the user to find the way to reduce the exergy losses. These features of the proposed exergy calculator make it preferable for its implementation in ProSimPlus® to define the most realistic and profitable retrofit projects on the existing chemical and thermal plants

    Computer Aided Aroma Design. I. Molecular knowledge framework

    Get PDF
    Computer Aided Aroma Design (CAAD) is likely to become a hot issue as the REACH EC document targets many aroma compounds to require substitution. The two crucial steps in CAMD are the generation of candidate molecules and the estimation of properties, which can be difficult when complex molecular structures like odours are sought and when their odour quality are definitely subjective whereas their odour intensity are partly subjective as stated in Rossitier’s review (1996). In part I, provided that classification rules like those presented in part II exist to assess the odour quality, the CAAD methodology presented proceeds with a multilevel approach matched by a versatile and novel molecular framework. It can distinguish the infinitesimal chemical structure differences, like in isomers, that are responsible for different odour quality and intensity. Besides, its chemical graph concepts are well suited for genetic algorithm sampling techniques used for an efficient screening of large molecules such as aroma. Finally, an input/output XML format based on the aggregation of CML and ThermoML enables to store the molecular classes but also any subjective or objective property values computed during the CAAD process

    Computer Aided Aroma Design. II. Quantitative structure-odour relationship

    Get PDF
    Computer Aided Aroma Design (CAAD) is likely to become a hot issue as the REACH EC document targets many aroma compounds to require substitution. The two crucial steps in CAMD are the generation of candidate molecules and the estimation of properties, which can be difficult when complex molecular structures like odours are sought and their odour quality are definitely subjective or their odour intensity are partly subjective as stated in Rossitier’s review (1996). The CAAD methodology and a novel molecular framework were presented in part I. Part II focuses on a classification methodology to characterize the odour quality of molecules based on Structure – Odour Relation (SOR). Using 2D and 3D molecular descriptors, Linear Discriminant Analysis (LDA) and Artificial Neural Network are compared in favour of LDA. The classification into balsamic / non balsamic quality was satisfactorily solved. The classification among five sub notes of the balsamic quality was less successful, partly due to the selection of the Aldrich’s Catalog as the reference classification. For the second case, it is shown that the sweet sub note considered in Aldrich’s Catalog is not a relevant sub note, confirming the alternative and popular classification of Jaubert et al., (1995), the field of odours

    Approche multi-classes de représentation des molécules pour la conception des produits-procédés assistée par ordinateur

    Get PDF
    La Conception de Produits Assistée par Ordinateur (CPAO) est largement utilisée dans le domaine « Process System Engineering » (PSE), comme un outil puissant pour la recherche de nouveaux produits chimiques. Les étapes cruciales de la CPAO sont la génération des molécules et l'estimation des propriétés, particulièrement quand les structures moléculaires complexes comme les arômes sont recherchées. Dans cet article, nous présentons une approche multi-classes de représentation des molécules basée sur les graphes moléculaires et la connaissance chimique. Trois catégories de groupes fonctionnels sont proposées : groupes élémentaires, groupes de base et groupes composés. Ces derniers servent à générer quatre classes de représentation qui peuvent être utiles pour la prédiction des propriétés et dans le design des molécules (CAMD). Une structure d’informations entrée-sortie basée sur le langage XML est définie, pour favoriser l'interopérabilité entre les logiciel
    corecore